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Abstract: A range of functionalised spirocyclic systems have been prepared under mild and neutral
conditions by tandem selective ring closing olefin metathesis reactions. Additionally, a marked preference
for 5-membered ring closure over 7-membered ring closure was observed which appears to be a result of a
kinetically favoured cyclisation process. © 1999 Elsevier Science Ltd. All rights reserved.

Transition metal catalysed ring closing olefin metathesis has recently emerged as one of the most powerful
techniques available for the construction of carbo- and heterocyclic compounds.! In this context, we wished to
exploit this technique in a novel spirocycle assembly through the employment of two tandem ring closing
metathesis reactions on a tetraalkene. As outlined in Scheme 1, tetraene 1 can undergo ring closing metathesis
through two modes leading to two different products. Desired spirocyclisation would require selective metathesis
through mode a to provide 2, whereas monocyclic product 3 would result from cyclisation through mode b.2
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We were confident that 5-membered ring formation would be the dominant process, however as 7-
membered ring closure is known to be readily accomplished under mild conditions,3 it was unclear as to the level
of selectivity of spirocyclisation over the competing process. In an effort to gauge the likely selectivity of mode a
cyclisation over mode b, we prepared a simple model substrate 54 and examined its behaviour on treatment with
catalytic quantities of Grubbs's Ru-catalyst 4. As outlined in Scheme 2, we were pleased to find that 5-membered
ring cyclisation proceeded with complete selectivity to afford dihydrofuran 6 with no detectable quantity of cyclic
acetal 7 (250MHz 'H NMR).5
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We next turned our attention to developing this selective metathesis process into a novel, catalytic, and
general technique for the assembly of functionalised spirocyclic systems. We therefore examined the reaction
scope using a range of tetraolefinic precursors, the results are outlined in Table 1.6

Table 1: Ru-catalysed spirocyclisation®

Entry Substrate® Product Yield

1 X @Q 90%
s_\—_— 9

2 @@ 50%°
9

3 @@ 98%
12
14

=/b

15 = 16

8All reactions carried out in 0.1M CH,Clp at 25°C with 5 mol %
of 4 and were complete within 6h unless otherwise indicated.
bAll substrates prepared under routine conditions, see
reference 6.

®Carried out at 40°C with 15 mol % of 4 over 36 hours.
dCarried out at 40°C with 8 mol % of 4 over 48 hours.

Our initial studies focused on the preparation of spirocyclic acetal 9. As outlined in Entry 1, the high
selectivity for 5S-membered ring formation was observed in the spirocyclisation process such that 9 was readily
assembled from 8 under mild conditions. Notably, spiroacetal 9 rapidly decomposes to furan 17 on treatment

with catalytic TsOH at room temperature within 1 hour. This result suggests that functionalised [4,4]-spiroacetals
4/ \ P such as 9 cannot be accessed by traditional acid catalysed techniques,’-8 however, they are
> prepared in excellent yield under these newly developed neutral metal catalysed
17 OH spirocyclisation conditions. Additionally and notably, seven-membered ring cyclic
compounds can also provide the desired spirocycles as exemplified in Entry 2. Cyclic acetal

10 provides 9, albeit in moderate yield, after addition of 15 mol % catalyst in refluxing CHCl; over 48 hours.
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Subsequently, this technique was extended and readily applied to the preparation of spirocyclic carbocycles such
as 12 (Entry 3) and to the homologous six membered ring isomer 14 (Entry 4). Both reactions proceeded quickly
and efficiently at room temperature. Additionally, butenolide 16 could also be accessed. In contrast, this reaction
was found to be sluggish, affording the product in moderate yield after heating in refluxing dichloromethane with
portionwise addition of catalyst over 48 hours.?

A plausible mechanism for the selective spirocyclisation process is outlined in Scheme 3. It is likely that
initiation takes place at the less hindered alkene to provide alkylidene 18.10 At this stage it is possible that
selective cyclisation originates from a kinetically favoured 5-membered closure. Alternatively, 7-membered ring
formation may effectively compete with S-membered ring closure. However, if this process is reversible the
reaction may be driven forward to the spirocyclic product on entropic grounds (i.e. by releasing an extra
equivalent of ethylene). On the other hand, the observation that cyclic acetal 10 was unreactive when exposed to
the catalyst at room temperature for over 12 hours and was only partially converted to 9 with higher catalyst
loadings at elevated temperatures over a 36 hour reaction period strongly suggests that formation of 3 is only very
slowly reversible and that the observed selectivity for spirocyclisation is the result of a kinetic preference for 5-
membered ring closure rather than an entropically driven process.
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In conclusion, we have demonstrated that a selective tandem ring closing metathesis process provides an
efficient technique for the preparation of a variety of functionalised spirocyclic systems under mild conditions. In
the case of [5,5]-spirocycles, the cyclisation reaction appears to be kinetically driven although we have found that
7-membered ring formation is reversible under more forcing conditions.
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